PLANT ANTITUMOR AGENTS, 24.1 RAPID 9-KB ASSAY

MONROE E. WALL,* HAROLD TAYLOR, and M.C. WANI

Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina, 27709

The standard 9-KB cyctotoxicity assay that utilizes cells derived from a human epidermoid carcinoma of the nasopharynx was initially described by Eagle (1,2), was standardized by the National Cancer Institute (3), and has been useful for many years as a preliminary screen for cytotoxicity or for fractionating plant samples prior to carrying out assays for in vivo activity.

We had occasion, however, to screen more than 1600 plant samples for 9-KB in a limited time period with a limited staff. We wish to describe a rapid, simplified 9-KB assay designed to test for activity at a cut-off point of ED₅₀, 20 μ / ml, which not only increased our weekly productivity from 40 to 200 samples but also reconfirmed most of the samples found active at 20 μ g/ml when retested by the standard procedure (3). After incubation at 37° for 72 h (3), the tubes were removed and visually examined for color. Samples with heavy cell growth (no inhibition at 20 μ g/ml) will be yellow; those with low growth will be red, indicating inhibition at 20 μ g/ml.

As a check, media can be removed from the tubes, the 9-KB cells washed with saline, drained, and Lowry's reagent added. After heating for 5 min at 60° , 0.5 ml of Folin's reagent is added and the optical density (OD) determined using a suitable photometer set at a wavelength of 660 nm (3). This OD can be compared with the value obtained from cells grown in the absence of any inhibitor.

RESULTS AND DISCUSSION

Using the simplified procedure we screened 1628 plant extracts at a rate of 200/week compared with 40 by the standard procedure. The method required less than 3 days/week of technician time compared with 5 days/week in the standard procedure. The procedures are compared in Table 1.

Procedure	Number of Sample Dilutions Tested	Total Tubes	Total Volume Growth Media (ml)	Incubation Time (h)	Cell Digestion	Folin Reagent	Reading ^a Method	Calculations
Standard	5	10	40	72	yes	yes	optical density	yes
Rapid	1	1	4	72	no	no	visual	no

TABLE 1. Comparison of Standard and Rapid 9-KB Procedures

"If visual color changes should be questionable, OD readings can be made as in the standard procedure.

EXPERIMENTAL

The 9-KB cells are brought into an active growth phase exactly as described in standard procedure (3). The sample to be assayed (in our case CH_2Cl_2 extracts prepared from EtOH extracts) was dissolved in the solvent of choice (we usually used 95% EtOH or H_2O in the case of aqueous fractions) to give a concentration of 20 mg/ml and then diluted to 80 µg/ml with media containing the 9-KB cells. Only one dilution is assayed per sample in contrast to the standard procedure that utilizes three or more dilutions. Of the 1628 samples tested, 59 showed activity at the 20 μ g/ml level. Of these, 40 were active at 10 μ g/ml or lower when reassayed by the standard method (3). Table 2 gives the names and activity of the cytotoxic samples that confirmed at ED₅₀, 1×10¹ ml. The 20 μ g/ml ED₅₀ value adopted as a cut off point is reasonable based on our extensive experience over a 25-year period in comparing in vitro 9 KB and in vivo P-388 assay data. We have rarely obtained other than negative or marginal P-388 activity in extracts which showed ED₅₀ in 9 KB>20 μ g/ml. The above proce-

¹For Part 23 in this series see M.C. Wani, A.W. Nicholas, and M.E. Wall, J. Med. Chem., **29**, 2358 (1986).

Jul-Aug 1987]

Family	Genus	Species	Plant Part ^b	Source	9-KB Activity
Apocynaceae Aristolochiaceae	Roupellina	boivin	vin st,lf,fl		3×10 ⁰
Asteraceae	Aristolochia	debilis	st,ws,sb	China	5×10^{0}
	Carpesium	abrotanoides	st lf	China	5×10^{0}
	Olearia	calcarea	rt sr lf fl fr	W Aust	5 X 10 ⁰
	Sonchus	sp.	et et lf fl	W/ Aust	5 × 10 ⁰
Bignoniaceae	50111145	sp.	11,31,11,11	w. nust.	JX 10
Bomginger	Markhamia	platycalyx	rt	India	7×10^{0}
Doraginaceae	Lithospe rmum	erythrorhizon	rt	China	5×10 ⁻¹
Celastraceae			16.0		
C 11	Psammamoya	choretroides	rt,st,lf,fl	W. Aust.	$5 \times 10^{\circ}$
Cucurbitaceae	D <i>U</i> .				0
	Bolbostemma	paniculatum	rt	China	$3 \times 10^{\circ}$
	Hemsleya	macrosperma	rt	China	9×10 ⁰
Epacridaceae					
Fabaceae	Ande r sonia	pa r vifolia	rt,st,lf,fl	W. Aust.	5×10 ⁰
Haemodoraceae	Oxylobium	parviflorum	rt	W. Aust.	1×10^{1}
	Anigozanthes	humilis	rt,st,lf,fl	W. Aust.	5×10^{0}
	Anigozanthes	mangglesii	rt,st,lf,fl	W. Aust.	1×10^{1}
Hydnoraceae	Hydnora	escalaenta	rh	Madagascar	1 × 10 ¹
Iridaceae	11)4			madagascar	1710
Liliaceae	Homeria	miniata	bu,st,lf,fl	W. Aust.	5×10^{-1}
	Asparagus	asparagoides	rt,st,lf,fl	W. Aust.	5×10^{0}
Miliaceae	N 11 .		16.0		()(100
Menispermaceae	Nalleastrum	sp.	rt,st,lf,fl	Madagascar	4 × 10°
	Pericampylus	glaucus	st,lf	China	9×10°
Myrtaceae					
	Melaleuca	pentagona	rt	W. Aust.	1×10^{1}
	Verticordia	c.f. grandifloria	rt,st,lf,fl	W. Aust.	5×10^{6}
Pinaceae					
Proteaceae	Pseudolaria	kaempferi	st,ws,sb	China	7×10^{-1}
	Banksia	laevigata	fr	W. Aust.	5×10^{0}
	Banksia	laevigata	rt	W. Aust.	1×10^{1}
	Banksia	laeviagata	ws.sb	W. Aust.	5×10^{0}
	Drvandra	armata	st.lf.fl	W. Aust.	5×10^{0}
	Grevillea	haxteri	rt	W Aust	5 × 10 ⁰
	Grevillea	excelsion	rt	W Aust	5 × 10 ⁰
	Grevillen	tilosa	rt .	W/ Aust	1 X 10 ¹
	Grevillea	pilosa	env 16 A	W/ Aust	1 × 10
	Greviller	pilosa tilosa	tw,II,II	W. Aust.	
	Usha	priosa	ws,sD	W. Aust.	5 × 10 ⁰
	Пакеа	costata	π	W. Aust.	5 10°
	Isopogon	scapriusculus	rt c	W. Aust.) X 10°
D1	Xylomelum	angustifolium	fr	W. Aust.	4×10^{9}
Knamnaceae		.	.		
	Pomaderris	ovaria	rt,ws,sb	W. Aust.	1×10'
Kubiaceae	Rubia	cordifolia	st,ws,sb	China	5×10°
Simaroubaceae					
	Brucea	javanica	fr	China	3×10 ⁰

TABLE 2. 9-KB Activities^a

^aThree active samples are not shown because of unconfirmed results.

^bbu=bulb, fl=flower, fr=fruit, lf=leaf, rh=rhizome, rt=root, sb=stem bark, st=stem, tw=twig, ws=stem wood.

_

dure can also be used as a rapid screen in fractionation procedures, setting the desired single inhibition concentration to the appropriate level, i.e., 1×10^{-1} , 1×10^{-2} etc., in this way eliminating inactive or less interesting chromatographic fractions.

ACKNOWLEDGMENTS

The support of this investigation by Contract NO1-CM-67089 and US Public Health Service Research Grant R01-CA-29890 from the Na-

tional Cancer Institute is gratefully acknowl-edged.

LITERATURE CITED

- H. Eagle and G.E. Foley, Can. Res., 18, 1017 (1958).
- V.I. Oyama and H. Eagle, Proc. Soc. Exp. Biol. Med., 91, 305 (1956).
- R.I. Geran, N.H. Greenberg, M.M. Mac-Donald, A.M. Schumacher, and B.J. Abbott, *Cancer Chemotherap. Repts.*, 3, 59 (1972), Protocol 13.

Received 10 February 1987